MS的主要生化功能是催化Hcy再甲基化為蛋氨酸,是Hcy代謝途徑的關(guān)鍵酶。MS基因定位于染色體1q43,已知的人類(lèi)MS基因突變有十余種,其中第2756位堿基A→G(A2756G,相當于密碼子919D→G)在西方人群中較為常見(jiàn),并可能導致血清Hcy水平的改變。本研究正常對照人群中雜合突變基因型(+/-)構成比為10.7%,未檢出純合突變(+/+)基因型;(+)等位基因的頻率為4.6%。據報道白種人中A2756G位點(diǎn)雜合子檢出率為30%,純合子為4%左右【10】;日本人(+)等位基因頻率為17%【11】;中國正常人群雜合子為17%,純合子1%,(+)等位基因頻率為9.5%【6】。由于遺傳變異存在種族差異和地區差異,該結果提示本研究人群A2756G位點(diǎn)變異頻率明顯低于白種人和日本人,甚至低于其它研究報道的中國人群頻率。考慮到遺傳變異差異性的客觀(guān)存在以及樣本的代表性,有關(guān)中國人群MS基因A2756G位點(diǎn)多態(tài)性問(wèn)題還有待進(jìn)一步研究。
本研究進(jìn)一步分析了MS基因A2756G位點(diǎn)變異與CHD的關(guān)系,結果顯示CHD患者與對照組的基因型構成及等位基因頻率無(wú)明顯差異(P>0.05),雜合突變子(+/-)的OR值為0.84(95%可信區間:0.35~2.01)。分性別分析及不同類(lèi)型CHD患者與對照組基因型構成差異亦無(wú)顯著(zhù)性(P>0.05),OR值介于0~1.15之間。由于親代基因變異一方面可能通過(guò)將突變基因遺傳給子代造成子代表型改變,另一方面也可能引起宮內高危環(huán)境從而影響子代胎兒期的發(fā)育。因此了解親代基因型與子代表型之間的關(guān)聯(lián),對于出生缺陷的早期篩查和防治具有重要的意義。本研究分析了先心病患者親代MS基因變異情況,結果顯示病例組與對照組母親的基因型分布及等位基因頻率無(wú)明顯差異,而病例組父親(+)等位基因頻率(5.0%)低于對照組(9.1%,P=0.060),其子代罹患CHD的OR值為0.53(0.25~1.09)。該結果提示親代(尤其父親)攜帶突變等位基因(+)可能使子代發(fā)生CHD的危險性降低。
有關(guān)MS基因多態(tài)性與CHD發(fā)生的關(guān)系目前尚未見(jiàn)報道,已有研究多集中于MS基因變異與神經(jīng)管畸形的關(guān)聯(lián)【12】,但研究結果并不一致,尚不能完全證明MS基因突變是否與神經(jīng)管畸形有關(guān)【13】。前已述及,MS是Hcy代謝途徑中的關(guān)鍵酶,而MS基因2756A→G變異可導致919位密碼子D→G的缺失突變,使編碼的天冬氨酸置換為甘氨酸。由于該密碼子編碼的氨基酸位于酶活性區域,因此推測該位點(diǎn)突變可能通過(guò)改變蛋白質(zhì)的二級結構,使MS活性上升或減弱,從而影響體內Hcy水平,以及進(jìn)一步干擾胚胎期心血管和神經(jīng)等多個(gè)器官、系統的發(fā)育【10】。有研究表明Hcy水平在(-/-)、(+/-)及(+/+)基因型間呈遞減趨勢【10,5】,也有研究表明A2756G位點(diǎn)變異與Hcy水平無(wú)明顯相關(guān)或變異導致Hcy升高【8,9】。本研究結果顯示親代攜帶突變等位基因(+)可降低子代CHD危險性,這提示MS基因變異可能使酶活性增加,進(jìn)一步導致Hcy水平下降,以及與之相關(guān)的出生缺陷危險性降低。因此本研究下一步將進(jìn)行Hcy水平的測定,以驗證A2756G位點(diǎn)突變與Hcy的關(guān)系,為進(jìn)一步明確MS基因變異與CHD的關(guān)聯(lián)架設橋梁。
以父母為對照的病例對照研究本質(zhì)上是一種配對研究,這種方法的實(shí)質(zhì)是以患兒的兩個(gè)等位基因作為“病例”,以父母未傳給胎兒的兩個(gè)等位基因作為“對照”,最大的優(yōu)點(diǎn)是不必為病例尋找具有相同遺傳背景的對照而可以克服遺傳因素的種族差異的混雜作用【7】。本研究結果顯示突變等位基因(+)在CHD核心家庭中存在遺傳失衡現象,即父母傳給胎兒等位基因(-)的比例大于(+),因此等位基因(-)使胎兒罹患CHD的可能性增高,而突變等位基因(+)則使胎兒發(fā)生CHD的危險性降低,其OR值為0.26(95%可信區間:0.11~0.60)。這與前述結果一致。因此本研究可初步認為親代MS基因A2756G位點(diǎn)變異與子代CHD的發(fā)生相關(guān),其突變等位基因(+)可能降低子代CHD的危險性。
致謝:本研究由國家重點(diǎn)基礎研究發(fā)展規劃“973”項目(G1999055904)和法國達能膳食營(yíng)養與宣教基金(DIC2002-08)資助。
參考文獻:
1. Li Y., Li S., Chen G.H., Hu B.H., Meng ZH.H., Chen Xing, Zhao R.B., Zhang Ch.H., Liu H., Zhao Zh.R., Tang J., and Li ZH. (2002). The relationship between HCY-2 gene and congenital heart teratogenesis in early chick embryo. National medical journal of China. 80(2), 131-134.
2. Sheth J.J., and Sheth F.J. (2003). Gene polymorphism and folate metabolism: a maternal risk factor for Down syndrome. Indian Pediatr. 40(2), 115-123.
3. Li Y., Li ZH., Chen X., Qi P.W., and Li S. (1999). Effect of homocysteine on cardiovascular development in early chick embryo. Chinene Journal of Preventive Medicine. 33(3), 137-139.
4. Junker R., Kotthoff S., Vielhaber H., Halimeh S., Kosch A., Koch H.G., Kassenbohmer R., Heineking B., and Nowak-Gottl U. (2001). Infant methylenetetra-hydrofolate reductase 677TT genotype is a risk factor for congenital heart disease. Cardiovascular Research. 51, 251–254.
5. Wang X.L., Duarte N., Cai H., Adachi T., Sim A.S., Cranney G., and Wilcken D.E. (1999). Relationship between total plasma homocysteine, polymorphisms of homocysteine metabolism related enzymes, risk factors and coronary artery disease in the Australian hospital-based population. Atherosclerosis. 146, 133–140.
6. Zhang G.S., and Dai CH.W. (2001). Gene polymorphisms of homocysteine metabolism related enzymes in Chinese patients with occlusive coronary artery or cerebral vascular diseases. Thrombosis Research. 104(3), 189-195.
7. Zhu H.P., Li ZH., Dao J.J., Zhao X.R., and Zhao R.B. (2000). Effect of parental MTHFR genotypes on offspring NTD risk. Hereditas. 22(5), 285-287.
8. Feix A., Fritsche-Polanz R., Kletzmayr J., Vychytil A., Horl W.H., Sunder- Plassmann G., and Fodinger M. (2001). Increased prevalence of combined MTR and MTHFR genotypes among individuals with severely elevated total homocysteine plasma levels. Am J Kidney Dis. 38, 956-964.
9. Jacques P.F., Bostom A.G., Selhub J., Rich S., Curtis Ellison R., Eckfeldt J.H., Gravel R.A., and Rozen R. (2003). Effects of polymorphisms of methionine synthase and methionine synthase reductase on total plasma homocysteine in the NHLBI Family Heart Study. Atherosclerosis. 166, 49-55.
10. Chen J., Stampfer M.J., Ma J., Selhub J., Malinow M.R., Hennekens C.H., and Hunter D.J. (2001). Influence of a methionine synthase (D919G) polymorphism on plasma homocysteine and folate levels and relation to risk of myocardial infarction. Atherosclerosis. 154, 667-672.
11. Hiroyuki Morita, Hiroki Kurihara, Takao Sugiyama, Chikuma Hamada, Yakiko Kurihara, Takayuki Shindo, Yoshio Oh-hashi, and Yoshio Yazaki (1999). Polymorphism of the methionine synthase gene association with homocysteine metabolism and late-onset vascular diseases in the Japanese population. Arterioscler Thromb Vasc Biol. 19, 198-202.
12. Doolin M.T., Barbaux S., McDonnell M., Hoess K., Whitehead A.S., and Mitchell L.E. (2002). Maternal genetic effects, exerted by genes involved in homocysteine remethylation, influence the risk of spina bifida. Am J Hum Genet. 71, 1222-1226.
13. Zhao T., Zhu H.P., Li Y. (2000). Methionine synthase and neural tube defects. Journal of Hygiene Research. 29, 397-400.
Polymorphism of Methionine Synthase Gene in Nuclear Families of Congenital Heart Disease
ZHU Wen-li,CHEN Jun,DAO Jing-jing,et al.
Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100083, China
Objective To investigate the relations of methionine synthase (MS) gene variation with congenital heart disease (CHD) phenotype. Methods 193 CHD patients (94 male and 99 female) and their biological parents (nuclear families) in Liaoning province were selected as case group, and another 104 normal population (60 male and 44 female) and their parents without family history of birth defects as control group. For all subjects the polymorphism of MS gene A2756G locus was examined by PCR-RFLP method. Results In offspring of control group the frequencies of MS genotype (+/-) and allele (+) were 10.7% and 5.3%, without existence of homozygote. The MS genotype distribution and allele frequencies of CHD patients and their mothers were not significantly different with control (P > 0.05). The frequency of allele (+) in case fathers (5.0 %) was apparently lower than control (9.1%, P = 0.060), and the odds ratio (OR) was 0.53 (95% CI: 0.25-1.09). There was no difference in parents’ genotype combination between two groups and either no difference in genotype distribution among different types of CHD. The analysis of genetic transmission indicated that the mutation allele (+) existed transmission disequilibrium in CHD nuclear families. The percentage of allele (+) transmitted from parents was lower than allele (-) with OR 0.26 (95% CI: 0.11-0.60). Conclusion The study showed that the MS gene variation in parents was associated with occurrence of CHD in offspring, and the mutation allele (+) in parents might be related with the decrease of CHD risk in offspring.
Key words: Methionine synthase; Gene polymorphism; Congenital heart disease; Nuclear family